
Lecture 4

Network security, TKK, Nov 2008 1

Network Security: Network Security:
Protocol Flaws, KerberosProtocol Flaws, Kerberos

Tuomas Aura, Microsoft Research, UK

2

OutlineOutline

Classic key-exchange protocols and flaws

Advanced protocol properties

Kerberos authentication

Kerberos in Windows domains

Classic keyClassic key--exchange exchange
protocols and flawsprotocols and flaws

4

NeedhamNeedham--Schroeder secretSchroeder secret--key key protocolprotocol

The first secret-key key-exchange protocol 1978
Kerberos is based on this protocol
Trusted server T shares a secret master key with everyone.
Encrypts a ticket and session key with master keys:

1. A → T: A, B, NA1

2. T → A: ETA(NA1, B, Kses, ticketAB)
3. A → B: ticketAB, Eses(NA2)
4. B → A: Eses(NA2-1, NB)
5. A → B: Eses(NB-1)

KTA, KTB = A’s and B’s master keys
Kses = session key selected by T
ticketAB = EKTB(Kses,A)

Encryption is assumed to also protect integrity. Nowadays,
we would use standard MACs but they did not exist in the
70s. For example:

EK(M) = AES-CBCK(M, HMAC-SHA-1K(M))

5

NeedhamNeedham--Schroeder Schroeder analysisanalysis

The protocol again:
1. A → T: A, B, NA1

2. T → A: ETA(NA1, B, Kses, ticketAB) // ticketAB = ETB(Kses,A)

3. A → B: ticketAB, E
Kses

(NA2)

4. B → A: EKses (NA2-1, NB)

5. A → B: EKses (NB-1)

T encrypts session key under A’s and B’s master keys

Authenticators for key confirmation

NA1 guarantees freshness of ticket and session key to A

NA2 and NB guarantee freshness of authenticators to A
and B

But no freshness of the ticket to B…

6

NeedhamNeedham--Schroeder vulnerabilitySchroeder vulnerability
The protocol again:

1. A → T: A, B, NA0

2. T → A: ETA(NA0, B, Kses, ticketAB) // ticketAB = ETB(Kses,A)
3. A → B: ticketAB, EKses (NA)
4. B → A: EKses (NA-1, NB)
5. A → B: EKses (NB-1)

Vulnerability discovered by Denning and Sacco 1981
Freshness of the ticket not guaranteed to B
Assume attacker compromises an old session key and has sniffed the
corresponding ticket, or
Assume attacker compromises A’s master key KTA. A’s master key is replaced but,
before that, the attacker manages to obtain a ticket for B

Replay attack by C who knows an old session key:
3’. C(A) → B: ticketAB-old, EKAB-old(NA) // ticketAB-old = EKTB-old(KAB-old,A)
4’. B → C(A): EKAB-old(NA-1, NB)
5’. C(A) → B: EKAB-old(NB-1)

How to fix?

Lecture 4

Network security, TKK, Nov 2008 2

7

DenningDenning--Sacco Sacco protocolprotocol
Public-key key exchange 1981; flaw found in 1994
A obtains certificates from trusted server T for both A’s
and B’s public keys

1. A → T: A, B
2. T → A: CertA, CertB

3. A → B: EB(TA, Kses, SA(TA, Kses)), CertA, CertB

Kses = session key selected by A
CertA = A, PKA, ST (A, PKA)

Analysis:
Expiration time missing from certificates → need to be added!
Public-key encryption for secrecy of KAB → ok
Public-key signature for authenticity of KAB → but what exactly
is authenticated?
Time stamp for freshness of session key → what about quick
replays?

8

DenningDenning--Sacco vulnerabilitySacco vulnerability
The protocol again:

1. A → T: A, B
2. T → A: CertA, CertB

3. A → B: EB(TA, Kses, SA(TA, Kses)), CertA, CertB

The signed message SA(TA, KAB) does not contain all possible
information.
Q: What is missing?
A: The signed message is not bound to the identity of B
Q: Does it matter when only B can decrypt the message?
A: B could be bad!
→ B can forward the last message to anyone else, e.g. to C:

3’. B(A) → C: EC(TA, KAB, SA(TA, KAB)), CertA, CertC

C thinks it shares Kses with A but it is really shared with B
Legitimate user B can impersonate legitimate users
→ insider attack
How to fix?

9

NeedhamNeedham--Schroeder publicSchroeder public--key key protocolprotocol

The first public-key key-exchange protocol 1978; flaw
found in 1995 [Lowe95]

A and B know each other’s public encryption keys or
obtain certificates from a trusted server T as needed

A and B exchange key material:
1. A → B: EB(NA, A)

2. B → A: EA(NA, NB)

3. A → B: EB(NB)

NA, NB = secret nonces

Kses = h(NA, NB)

Analysis:
Session key secret and fresh, entity authentication ok

Session key not bound to A

10

NeedhamNeedham--Schroeder publicSchroeder public--key key
vulnerablityvulnerablity

The protocol again:
1. A → B: EB(NA, A)
2. B → A: EA(NA, NB)
3. A → B: EB(NB)
Kses = h(NA, NB)

A authenticates to C. C can forward the authentication of A to B:
1. A → C: EC(NA, A)
1’. C(A) → B: EB(NA, A) // Re-encrypt for B
2’./2. B → A: EA(NA, NB) // Allow through
3. A → C: EC(NB)
3’. C(A) → C: EB(NB) // Re-encrypt for B

C thinks it shares Kses with A but also B knows it
(for A, everything is ok… in a way)
Insider attack: legitimate user B impersonates another user A
How to fix?

Hint: what could be added to each message? Does it help?

11

WideWide--mouthmouth--frog frog protocolprotocol

Toy protocol but interesting

A and B share secret master keys with trusted server T.
T delivers session keys:

1. A → T: A, EKTA
(TA, B, Kses)

2. T → B: EKTB
(TT, A, Kses)

KTA, KTB = A’s and B’s master keys shared with T

TA, TT = time stamps

Kses = session key selected by A

Analysis:

Encryption must protect integrity → implement with a MAC

Otherwise, looks pretty good… but there is a subtle issue with
the time stamps

12

WideWide--mouthmouth--frog frog protocolprotocol
The protocol again:

1. A → T: A, ETA(TA, B, Kses)
2. T → B: ETB(TT, A, Kses)

KTA, KTB = A’s and B’s master keys shared with T
TA, TB = time stamps
Kses = session key selected by A

Attack:
1. A → T: A, ETA(TA, B, Kses)
2. T → B: ETB(TT, A, Kses)
1. C(B) → T: A, ETA(TA2, B, Kses)
2. T → C(A): ETB(TT2, A, Kses)
1. C(A) → T: A, ETA(TA3, B, Kses)
2. T → C(B): ETB(TT3, A, Kses)
1. C(A) → T: A, ETA(TA4, B, Kses)
2. T → C(B): ETB(TT4, A, Kses)

… … …

Attacker can keep the session key alive for ever
Problem: authenticated messages 1 and 2 can be confused with each other
How to fix?
Add type tags to make the meaning of messages unambiguous

Lecture 4

Network security, TKK, Nov 2008 3

13

What is a protocol flaw?What is a protocol flaw?
Researchers like to present spectacular attacks and flaws but the
reality is often less black and white
Limitation on the applicability of the protocol:

Do insider attacks matter?
Multiple parallel executions by the same principal?
Is the protocol used for its original purpose or for something different?

Requirements for implementations:
Encryption mode in old protocols must protect integrity (checksum or
non-malleable encryption)
Signed and MAC’d messages must include type tags and be parsed
unambiguously

New requirements arise over time:
Man-in-the-middle attacks
DoS protections?
Identity protection?
Has the protocol become the weakest link after improvements to other
parts of the system?

Advanced protocol Advanced protocol
propertiesproperties

14

15

StationStation--toto--station (STS) protocolstation (STS) protocol

Variation of the original STS

Signed ephemeral Diffie-Hellman:

1. A → B: g, p, gx

2. B → A: gy, EKses(g
y, g, p, gx, SB(gy, g, p, gx), CertB)

3. A → B: EKses(g, p, gx, gy, SA(g, p, gx, gy), CertA)

Kses = h(gxy)

What could be wrong?

What does the encryption EK(…) achieve?

No known flaws (and STS has been well analyzed)

Encryption with the DH session key → identity
protection

Why does it need to be ephemeral DH?

16

My modified STSMy modified STS
Add a cookie exchange:
1. A → B: NA

2. B → A: NA, NB

3. A → B: NA, NB, g, p, gx

4. B → A: gy, EK(gy, g, p, gx, SB(gy, g, p, gx)), CertB

5. A → B: EK(g, p, gx, gy, SA(g, p, gx, gy)), CertA

K = h(gxy)
What does this modification achieve?
Responder B verifies A’s IP address before the DH computation →
prevents CPU-exhaustion attacks with a spoofed attacker IP
address
Even better: make B stateless between messages 2 and 3:
NB = h(A,B,NA,NB-periodic) where NB-periodic changes every minute

What is the cost of this defence? Is it worth it?

Kerberos authenticationKerberos authentication

17 18

KerberosKerberos

Shared-key protocol for user login authentication

Kerberos v4 1988-

Kerberos v5 1993- [RFC 4120]

Updated protocol and algorithms

ASN.1 BER message encoding

Implemented in Windows 2000 and later

Lecture 4

Network security, TKK, Nov 2008 4

19

Kerberos architecture (1)Kerberos architecture (1)

1.–2. Authentication

3.–4. Ticket for a specific service

4.–5. Authentication to the service

KDC

TGSAS

Application

server B

Client A

1
.
K

R
B

_
A

S
_
R

E
Q

2
.
K

R
B

_
A

S
_
R

E
P

3
.
K

R
B

_
T

G
S

_
R

E
Q

4
.
K

R
B

_
T

G
S

_
R

E
P

5. KRB_AP_REQ

6. KRB_AP_REP
ap_client.exe a

p
_

s
e

rv
e

r.
e

x
e

20

Kerberos terminologyKerberos terminology
Client/server computing model

Authentication for remote login sessions
Users and services are principals

Key distribution center (KDC)
Two components: authentication server (AS) and ticket-granting server
(TGS)
Trusted by all principals

KDC shares a master key with each principal
Long-term secret that is used only for initial authentication
Usually derived by hashing a password [RFC3961]

When user logs in, his workstation uses the password to obtain a
ticket-granting-ticket (TGT) from AS
When client needs to access remote services, it uses TGT to
request a service ticket from TGS for each server
(Note how the two-step process could be generalized to more
steps)

21

Kerberos architecture (2)Kerberos architecture (2)

KDC

TGSAS

Application

server B

Client A

1
.
K

R
B

_
A

S
_
R

E
Q

2
.
K

R
B

_
A

S
_
R

E
P

3
.
K

R
B

_
T

G
S

_
R

E
Q

4
.
K

R
B

_
T

G
S

_
R

E
P

5. KRB_AP_REQ

6. KRB_AP_REP

T
G

T

T
G

T
,
K

A
T

S
e

rv
ic

e
 t
ic

k
e

t,
 K

A
B

Service ticket

ap_client.exe a
p

_
s
e

rv
e

r.
e

x
e

krbtgt@RealmY

A@RealmY B
@

R
e

a
lm

Y

1.–2. Authentication with password
→ TGT and KAT

3.–4. Authentication with TGT and KAT

→ Service ticket and KAB

4.–5. Authentication with service
ticket and KAB

→ Service access

Message type, version

22

Kerberos ticketKerberos ticket

Same format for both TGT and
service ticket

Credentials = ticket + key

ASN.1 encoding in Kerberos v5

“Encryption” actually means
encryption and a MAC

Flags:
FORWARDABLE, FORWARDED,
PROXIABLE, PROXY, MAY-POST-DATE,
POSTDATED, INVALID, RENEWABLE,
INTINIAL, PRE-AUTHENT, HW-
AUTHENT

INITIAL flag indicates TGT

REALM, SNAMEREALM, SNAME
Server name and realm

FLAGS

KEY

CNAME, CREALM CNAME, CREALM
Client name and realm

TRANSITEDTRANSITED
transit realms

AUTH-TIME, END-TIME

CADDRCADDR
Client IP address (optional)

AUTORIZATION-DATAAUTORIZATION-DATA
App-specific access constraints E

n
c
ry

p
te

d
 w

it
h
 s

e
rv

e
r’
s
 m

a
s
te

r
k
e
y

23

Protocol detailsProtocol details
Initial login of user A:

1. A → AS: Preauthentication, A, TGS, NA1, AddrA

2. AS → A: A, TGT, EKA (KA-TGS, NA1, TGS, AddrA)

Ticket request:
3. A → TGS: TGT, AuthenticatorA-TGS, B, NA2, AddrA

4. TGS → A: A, Ticket, EKA-TGS (KAB, NA2, B, AddrA)

Authentication to server B:
5. A → B: Ticket, AuthenticatorAB

6. B → A: AP_REP

KA , KTGS, KB = master keys of A, TGS and B
KA-TGS = shared key for A and TGS
KAB = shared key for A and B
TGT = B, EKTGS (INITIAL, KA-TGS, A, Tauth, Texpiry1, AddrA))
Ticket = B, EKB(KAB, A, Tauth, Texpiry2, AddrA))
Preauthentication = EKA (1 TA)
AuthenticatorA-TGS = EKA-TGS (

2 TA)
AuthenticatorAB = EKAB (

3 TA)
AP_REP = EKAB(4 TA)
AddrA = A’s IP addresses

Notes:

1234) ASN.1 encoding
adds type tags to all
messages

Encryption mode
protects message
integrity

24

Crypto algorithmsCrypto algorithms

Algorithms in older implementations were complex
and potentially weak, e.g.:

DES encryption

CRC-32 encrypted with DES in CBC mode for integrity

Latest algorithm specification [RFC3961]
recommends AES and HMAC

Encryption mode must protect message integrity

Can be implemented by appending an HMAC

Lecture 4

Network security, TKK, Nov 2008 5

25

Kerberos realmsKerberos realms

Users and services registered to one KDC form a realm
name@realm, e.g. A@X, alice@asia.sales.contoso.com

Cross-realm trust:
Two KDCs X and Y share a key (krbtgt@Y is registered in KDC X and krbtgt@X is
registered in KDC Y)
KDCs believe each other to be honest and competent, at least to name users in
their own realm

Cross-realm authentication:
Client A@X requests from TGS at realm X a ticket for TGS at realm Y
The ticket is encrypted for krbtgt@Y (i.e. TGS at realm Y)
Client A@X requests from TGS at realm Y a ticket for server B@Y
Local policy at each KDC about when to honor tickets from other realms
Local policy at B@Y about whether to allow access to users from other realms

Possible to transit multiple realms → TRANSITED field in the ticket lists
intermediate realms

Local policy at each server about which transit realms are allowed

Server BUser A

Realm X Realm Y

Cross-realm trust

User registration

26

Realm hierarchyRealm hierarchy

Large organizations can have a realm hierarchy
Hierarchy follows internet names
→ easy to find a path between realms
→ can filter cross-realm requests based on the names
Can add shortcut links or create even a fully connected graph
between KDCs
E.g. Windows domain hierarchy

contoso.com

sales.contoso.com dev.contoso.com

euro.sales.contoso.com asia.sales.contoso.com

Bob David Alice

Charlie

Cross-realm trust

User registration

27

Password guessing attacksPassword guessing attacks
Kerberos is vulnerable to password guessing:

Sniffed KRB_AS_REQ or KRB_AS_REP can be used to test
candidate passwords → offline brute-force password guessing
In Kerberos v4, anyone could request a password-encrypted
TGT from AS → easy to obtain material for password cracking
Preauthentication in Kerberos v5 prevents active attacks to
obtain material for password cracking → must sniff it

Active vs. passive attacks
Misleading thinking:
Attacker who can perform only passive attacks is weaker →
vulnerability to weaker attackers is more serious →
vulnerability to passive attacks is more serious
Reality:
Active attacks can often be initiated by the attacker while
passive attacks require attacker to wait for something to sniff →
vulnerability to such active attacks is more serious

28

PKINITPKINIT

Goal: take advantage of an existing PKI to bootstrap
authentication in Kerberos

Replaces the KRB_AS_REQ / KRB_AS_REP exchange
with a public-key protocol

Public-key authentication and encryption to obtain TGT

Continue with standard Kerberos → transparent to TGS
and application servers

No password, so not vulnerable to password
guessing

Uses DSS signatures and ephemeral DH

Windows 2000 and later, no standard [RFC 4556]

29

Using the session keyUsing the session key
Authentication at the beginning of a session is of little value unless
session data is protected with the session keys

Attacker could not initiate sessions but is could sniff, modify and spoof
session data

Applications can use the Kerberos session key KAB in any way they
want

KRB_AP_REQ and KRB_AP_REP may include further key material
(subkeys) that is sent encrypted under KAB

Kerberos provides special messages for integrity protection and
encryption:

KRB_SAFE: data, TA, SN, addrA, addrB, MACKAB
(…)

KRB_PRIV: EKAB(data, TA, SN, addrA, addrB)
Access to these functions happens often through GSSAPI (called SSPI in
Windows)

Another message KRB_CRED for sending credentials (ticket and
secret key) for the purpose of delegation
Applications need to be “Kerberized” to use Kerberos for
authentication

30

DelegationDelegation
Server may need to perform tasks independently on the client’s
behalf, e.g.

Recursive RPC
Agents operating when the user is no longer logged in
Batch processing at night

Alice can give her TGT or service ticket and key to David
Controlling the use of delegated rights:

Delegate only a service ticket, not TGT
Ticket may specify allowed the client IP addresses
Authorization-data field in ticket may contain app-specific restrictions

Flags related to delegation:
FORWARDABLE flag in TGT: can be used to obtain a new TGT with
different IP addresses
PROXIABLE flag in TGT: can be used to obtain service tickets with a
different IP address

Delegation of identity
When B has A’s ticket and key, B can act as A and nobody can tell the
difference → difficult to audit access; similar to sharing passwords

Lecture 4

Network security, TKK, Nov 2008 6

Kerberos in Windows Kerberos in Windows
domainsdomains
Thanks to Dieter Gollmann

31 32

Windows access control summaryWindows access control summary

Two kinds of access rights: privileges and
permissions

The O/S stores security attributes for each
processes (subject) in a token

Token contains a list of privileges and a list of SIDs
(i.e. user and group identifiers).

The privileges are the union of all privileges
assigned to the SIDs on the local machine. The list is
created at login time

Permissions are decided by comparing the list of
SIDs against a DACLs on an object

33

Accessing objects across networkAccessing objects across network

Alice is logged on her local machine (client) and
wants to access resources (e.g. email) on a remote
machine (email server)

Resources on the server are managed by a Windows
service (daemon process) on the server

Alice is running software (e.g. email client) that uses
remote procedure calls (RPC) to access the remote
resources on the server

How does Windows allow and control access to
such remote resources?

34

Network credentialsNetwork credentials

Alice’s user name, SID and network credentials
(password) are cached on the client

Alice’s processes can use her network credentials
for remote login

→ Authenticated access to network servers is mostly
transparent to Alice

Some applications ask for a different user name and
credentials and store them separately

Authentication protocols like Kerberos do not reveal
the credentials (password) to the server, only
temporary keys

35

ObservationsObservations
The service running on the server controls access to
stored emails there
Alice trusts the client machine to store her password,
and her client software to use it for remote login

Thus, Alice must have high confidence in the client machine
and the software she runs there

Alice’s password is used to authenticate Alice to the
server. However, the server does not learn the password
and cannot later pretend to be Alice

Thus, Alice only trusts the server to manage her email. She
does not need to trust the server for anything else

The server requires Alice to login just as if she were at
the server console

The server does not trust the client machine at all (cf. Unix
trusted hosts mechanism)

36

Tokens and remote accessTokens and remote access

Tokens are meaningful only to the local machine
and cannot be sent over network

The server does not trust the client machine to tell who
Alice is and which groups she belongs to

Instead, the client authenticates Alice to the server
using her network credentials. The server creates a
new login session and a new token (on the server)
for Alice

The service may now assign the token to a process
or thread (impersonation) or implement its own
access control based on the token contents

Lecture 4

Network security, TKK, Nov 2008 7

37

Network authenticationNetwork authentication

Windows supports two authentication protocols:
NTLM: legacy protocol from Windows NT

Kerberos V5: implements RFC 1510

The authentication protocols also
Provide the server with Alice’s user and group SIDs

Produce a session key for protecting data between the
client and server

The session protocol is different for network logon,
RPC, COM. Encryption and authentication are
controlled by applications

38

Kerberos Kerberos in Windowsin Windows

Realm = Windows domain

Realm hierarchy = domain hierarchy

KDC = domain controller (DC)
Information about users is stored in active directory (AD)

39

Kerberos and SIDsKerberos and SIDs

Kerberos authenticates ‘principals’, but which
principals should be authenticated?

User name and a domain name (e.g. EUROPE\tuomaura)?
The appropriate fields in the ticket for this are CNAME and
CREALM

Principals according to the access control model?
Windows puts the user SID and group SIDs in the optional
field authorization-data

Controversy over proprietary extensions,
interoperability and standards compliance

General remark on standards: options are there to
be used but cause incompatibilities

Message type, version

40

Kerberos ticket in WindowsKerberos ticket in Windows

REALM, SNAMEREALM, SNAME
Server name and realm

FLAGS

KEY

CNAME, CREALM CNAME, CREALM
Client name and realm

TRANSITEDTRANSITED
transit realms

AUTH-TIME, END-TIME

CADDRCADDR
Client IP address (optional)

AUTORIZATION-DATAAUTORIZATION-DATA
App-specific access constrains E

n
c
ry

p
te

d
 w

it
h
 s

e
rv

e
r’
s
 m

a
s
te

r
k
e
y

Username, domain

User and group SIDs

41

Delegating Kerberos credentialsDelegating Kerberos credentials

Alice needs a service from Bob, where Bob has to
access servers on her behalf

For example, a print server needs to access Alice’s email
and files on file server to complete her printing jobs

Alice applies for a proxyable ticket for the relevant
servers and gives the ticket and corresponding
session key to Bob

42

ExercisesExercises
How to attack the Needham-Schroeder secret-key protocol if the
encryption is no integrity-protecting, e.g. EK(M) = AES-ECBK(M) ?
Read about the Yahalom and Otway-Rees protocols. Can you find
any flaws by yourself?
Model the Needham-Schroeder shared-key protocol in Proverif
How would you model identity or DoS protections with a tool like
Proverif? (This is a difficult question.)
Can you spot any (potential) vulnerabilities in the integrity
algorithms used by older Kerberos implementations? See
[RFC1510]
Find source code for a Kerberized client/server application (e.g.
telnet) and see how it accesses Kerberos services
Why is Kerberos used on the intranets and TLS/SSL on the
Internet? Could it be the other way?

